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The propagation of linear acoustical disturbances in gas suspensions containing solid 
particles has been investigated repeatedly (for example, see [i], as well as [2-4]), with 
the speed of sound being determined in the majority of cases using the equilibrium equation 
of state for the mixture as a whole. Attempts to allow for nonequilibrium processes of dy- 
namic and thermal relaxation, usually made at the phenomenological level through the intro- 
duction of the appropriate relaxation times, are contained in [2-6], for example. Recently 
the problem of obtaining a single evolutionary equation for waves of small but finite ampli- 
tude has also been considered; different versions of the Burgers equation have been obtained 
as a result [5-7]. 

A significant defect of these reports is that the exchange of heat and momentum between 
phases is usually described within the framework of the simplest relaxation formalism, when 
one uses some a priori relations, the insufficient (and sometimes simply the unknown) accu- 
racy of which restricts the actual limits of applicability of the final results obtained [5]. 
In addition, either dynamic or thermal relaxation is often neglected in order to make it 
possible to use either a one-velocity or a one-temperature model of a two-phase mixture 
[6, 7], and one also assumes that the volumetric concentration of particles in the mixture 
is low, and thereby neglects all constraint effects in describing processes of exchange be- 
tween phases, the role of which is very large in concentrated systems. 

In the theory proposed below these limitations are removed. Specifically, the propaga- 
tion of waves of not too high frequency in moderately concentrated gas suspensions (with a 
volumetric concentration of suspended particles of up to 20-25%) is investigated. 

I. Equations of Conservation and Exchange between Phases 

Let us consider one-dimensional disturbances in a quiescent, two-phase mixture consist- 
ing of a compressible ideal gas and inert, incompressible, solid spheres of the same small 
radius suspended in it. For the continuous and disperse phases in the continuous approxima- 
tion we write the equations of conservation of mass 
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(1.1) 

conservation of momentum 

~do -~ q- u -~z u =  ox ]' poll ~7 q- ~' v = [; (1.2) 

and heat flow 

edoCv 7t + u ~ To + RdoTo + ou) = - Q + /, 

a T = 9diCl ( ~ -l- v ~ )  1 Q, 
(1.3) 

where do, d:, CV, and C: are the densities and specific heats of the materials of the phases; 
u, v, To, and T~, average velocities and temperatures; f and Q, fluxes of momentum and heat 
between phases calculated per unit volume of the mixture; p, volumetric concentration of 
particles; R, universal gas constant, normalized to the molecular weight of the gas. The 
equations for the continuous phase in (i.I) and (1.2), the equation of state of an ideal 
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gas, and the well-known thermodynamic relations were used in the derivation of the first 
equation in (1.3). The molecular viscosity and heat conduction are taken into account in 
(1.2) and (1.3) only in determining quantities characterizing the exchange between phases. 

To close the system (1.1)-(1.3) we need concrete expressions for the force f and the 
heat flux Q, which can be obtained in principle from an analysis of nonsteady dynamic and 
thermal problems for an individual particle with allowance for the influence of all other 
particles. Such problems were solved in [8, 9] for low values of the Reynolds and Peclet 
numbers and for moderately concentrated disperse systems (in which the nonoverlapping of 
particles can be neglected). In general, the expressions for f and Q are very cumbersome; 
in the concrete calculations below we use their low-frequency limits, assuming in addition 
that the ratio of thermal conductivitie#of the particle material and the gas is far greater 
than unity. In this case from [8] we have 

9 ,o ~'~ 1 -F 0 r 
[ . . . .  2 t - -  5p, /z  a"- (u - -  v), 

where a is the particle radius; Po and vo, dynamic and kinematic viscosities; w, characteris- 
tic frequency of the process. From this and from the second equation in (1.2) we get 

u ~ l t + r d - ; 7 -  t \  v, ~g=-~- 1-- .~9  vo do. 

From [9] we obtain 

( [ 9 
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whereto is the thermal diffusivity of the gas. The specific heat of the gas at constant 
pressure is analyzed in (1.5) in accordance with [i0]. It is seen that for real gas suspen- 
sions the times of dynamic and thermal relaxation, T d and ~t, introduced above have the same 
order of magnitude. Equations (1.4) and (1.5) are valid when the inequalities 

o) << Vo/a 2, ~ << V:o/a 2 ~ • ~ 

are satisfied; when they are violated one must allow for terms in the expression for the force 
f which correspond to the Basset and Faxen forces, as well as the buoyant force in the field 
of inertial forces [8], while in Eq. (1.5) one must allow for terms containing higher time 
derivatives. The above-indicated inequalities are assumed to be satisfied; since dl/do = 10 3 , 
however, even under this condition the quantities w~ d and ~z t can have the order of i0 =. We 
also note that the upper limit on the frequency w follows from the condition of adequacy of 
the continuous approximation: The length of a sound wave must be far greater than the spa- 
tial microscale of the mixture. 

2. Speed of Sound 

Denoting the quantities in a quiescent gas suspension by the adopted symbols and their 
perturbations by the same symbols with a prime, from (1.1)-(1.5) we obtain the following sys- 
tem of linearized equations: 

e 77f c do ~ i eao~J ,T[75~Jx = O, 
t t )  
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Here we introduce the average density and the average specific heat of the mixture, 

d - -  sd o .-F 9J1, dO = sdoC v ? 9dLC l. (2.2) 
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Let us consider a plane monochromatic wave characterized by the variable multiplier 

exp [ i ( k x  - -  et)] = exp { ( e / c ) [ i ( x  - -  ct)  - -  m x ] } ,  (2 .3)  
I m ~  = O, R e k  = ~ I c ,  h n k  = ~ m l c ,  

where c and m are the velocity of propagation of the wave and its effective attenuation coef- 
ficient. 

Substituting (2.3) into (2.1), from the characteristic equation of the resulting system 
of linear equations for the amplitudes d~, v' and T~ we have the dispersion relation 

(2 .2)  

2 RdoT o ( i -  ieoJT;d) (clC@ edoTt -~ ipdlClO)Tt) " 
(2.4) 

Separating the real and imaginary parts here and using the definitions of d and dC in 
and of c and m in (2,3), we obtain 

= 7 1 + ] / ~  "~ = t +  g ~  '--V-g ~' (2.5) 

where 
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A '  ~- ey @ P A t  ~-  9eAto)xdo)~t ;  

B = s(e -1- 9At)o)'~d -- 9At(e @ pAd)(OTt; 

B' = e(ey -t- 9At)~O-rd --  pAt(o~t; 
A d  -= dl /do;  A t = dlCa/doC v .  

Equations (2.5) differ quite significantly from the known equations. If we even assume, 
as is done in [6, 7], that T d z 0 and z~vG0 (i.e., that dynamic relaxation takes place con- 
siderably faster than thermal relaxation) and we consider the low-frequency limit ~T t << i, 
from (2.5) we obtain for the speed of sound of the wave 

ye § oA t i 1/~ c_f_~ . (2.6) 
% 6;(~ + ~a~)(~ + ~Ad)J 

According to [6], where they used similar assumptions and started directly from a one- 

velocity model of the medium, we have 

S i _ = I  '§ ]t'~ 
c o V(I + oAt) 

It is seen that for 0Ad~l (i,e., 0~ 10 -3 ) the latter result is greatly overstated. 

The concentration of the mixture affects the propagation velocity and attenuation coef- 
ficient of sound waves, first, because the effective density and specific heat of the mixture 
depend on it, and second, because of the dependence on it of the characteristic times of dy- 
namic and thermal relaxation, which reflects the ififluence of constraint on the processes of 
exchange between phases. The first dependence becomes important even for very dilute gas sus- 
pensions, while the secondis important only for gas suspensions of sufficiently high con- 

centration. 

Specific calculations from Eqs. (2.5) were made for a suspension of quartz sand in air 

at atmospheric pressure and a temperature of about 20~ In this case we have approximately 
A d = A t = 1.77" 103 , y = 1.40, and a ratio of relaxation times 
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Then we have 

~-~ ~ 1 - -  ', t '~G'~ I :  3 . 

Td~o = --9-- t -- -2- f, . . ,  T~(o =.-- .-4- 1 -- =2- ,o "q/ o.. - do" % . . . .  0). 

In Fig. 1 we present c/co and m (solid and dashed curves, respectively) as functions of 
D for different ~ (numbers on curves), and in Fig. 2 as functions of ~ for different p. It 
is seen that the attenuation of sound waves is small only for very low mixture concentrations 
or frequencies. For p ~0.01 and fi~l significant attenuation occurs even over distances 

on the order of a wavelength. 

3. Evolutionary Equation 

Now let us consider the propagation of disturbances of finite amplitude, slightly non- 
linear in the sense that distortions of the profi]e of the disturbance caused both by the 
nonlinearity and by dissipation are relatively small over distances on the order of a wave- 
length. As follows from the foregoing, such an assumption can be proper only for suffi- 
ciently small p and ~; therefore, here we are confined to the analysis of the situation 
when ~m d = ~m t << i. A wave with little distortion of the profile can be analyzed using the 
well-known method of many scales. In the present case this comes down to the fact that its 
amplitude, multiplied by the variable quantity in (2.3), is assumed to depend on the product 

z = 6x, where 6 is a quantity of first-order smallness with respect to the amplitude (see 

[ii, 12], for example). 

We introduce the new variables 

y = t - - x / c ,  z =  6x, ( 3 . 1 )  

where the speed c is defined in (2.6), corresponding to a comoving coordinate system for low- 

frequency waves of small amplitude. 

To within terms of second order with respect to amplitude, inclusively, from (1.1)-(1.3) 
we obtain a system of equations replacing the linear equations in (2.1), which in the comov- 

ing coordinate system (3.1) is written in the form 

0~' 0do do 0~' t o (~'.'o) ~" :~'-- ---o, 
do'~z -~- e ~ c uy c Oy edo 7 @2 

( ' ) , d 1 d o v" I Or" _~ ~d d2v ' l 'Odo 1 OTo 
e - } - '~oP- ; -e"  d o c -7-'Tf~j 8-'7-0~--7--}-RT0 ,)--f @ cr o Oz ( ? . 2 )  

, , ,)] 1 0do 1 ~Jro 1 ')(do_to == 0, 
C2do 0 U C2To 0!1 c2doTo Oil J 

dlC 1 do v" I OTo dlCl xt d2T; t Or" xd d2~ '" 1 d o Oz," 1 T; &,, 

~+~+~"o -: ~o :~ ~-T:. -~ ~o o,,' i (v-~)"L ~ o,. ~ < , �9 d:l" c d 0 dy c ]'o aft / 

From t h e  l i n e a r  p r o b l e m  d i s c u s s e d  i n  S e c .  2 we c a n  o b t a i n ,  i n  t h e  l o w - f r e q u e n c y  l i m i t  
~ d  = m~t  << 1 ,  t h e  f o l l o w i n g  r e l a t i o n s ,  v a l i d  t o  w i t h i n  q u a n t i t i e s  o f  f i r s t  o r d e r  w i t h  r e -  

s p e c t  t o  a m p l i t u d e :  

369 



iO "4 

~ _, 

0 : 

fO-~ iO ~2 

Fig. 3 

r 

+ pA~ r O = p_:.,. 
e 

v' do (3.3) 
c d o ? -- i T O p 

Transforming terms of second-order smallness in (3.2) using (3.3), which does not impair 
the accuracy adopted here, multiplying the first equation in (3.2) by RTo/sc2do and the third 
by (RTo/c2)(s + pat)-*, and combining the results with the second equation, after calculations 
we obtain a single evolutionary equation for slightly nonlinear waves in the form of the 
Burgers equation 

~' ~ , ~ ~ '  
Oz -- c ~ v a y - -  - aye" (3.4) 

Here we introduce the coefficients 

= - z - 4 - T X T )  ' 

(3.5) 

A similar equation can also be obtained [using (3.2] for any other quantity that varies 
in the wave. The Burgers equation has been investigated in detail earlier (see [II, 12], 
for example). 

If the concentration p is not too low, from (3.5) we get 

Co) I~t~ T ,  It,.z-Te I--e7 -7- z~,~ ,~---szd, 

from which it is seen that whereas the characteristics of linear acoustical disturbances are 
affected equally strongly by processes of dynamic and thermal relaxation, the "relaxation 
viscosity," counteracting the nonlinear "steepening" of slightly nonlinear waves, is deter- 
mined mainly by dynamic relaxation. Therefore, in particular, one can approximately analyze 
the propagation of such waves using a two-velocity, one-temperature model of the two-phase 
mixture, but a one-velocity, two-temperature model proves inadequate. 

The relation between the orders of magnitude of the two terms on the right side of Eq. 
(3.4) is determined by the value of the parameter mB2/81, where m is the characteristic wave 
frequency, as before. The dependence of this parameter on p for ~ = 10 -3 is presented in 
Fig. 3; such dependences corresponding to different ~, like the analogous dependences of the 
attenuation coefficient m, have maxima at p~0.01. At the corresponding concentrations the 
relative effects of dissipation are particularly strong. 

LITERATURE CITED 

I. A.N. Kraiko, R. I. Nigmatulin, V. K. Starkov, and L. E. Sternin, "The mechanics of 
multiphase media," Gidromekhanika, ~ (1972). 

2. P. P. Zolotarev, "Propagation of weak disturbances in mixtures," Izv. Akad. Nauk SSSR, 
Mekh. Mashinostr., No. 4 (1964). 

3. V.S. Popov, "Propagation of small disturbances in gases containing solid particles in 
a suspended state," Inzh.-Fiz. Zh., 14, No. 4 (1968). 

4. F.E. Marble, "Dynamics of dusty gases,"Ann. Rev. Fluid Mech., ~ (1970). 
5. G.A. Davidson, "A Burgers' equation approach to finite amplitude acoustics in aerosol 

media," J. Sound Vib., 38, No. 4 (1975). 
6. A.A. Borisov, A. F. Vakhgel't, and V. E. Nakoryakov, "Propagation of long-wavelength 

disturbances of finite amplitude in gas suspensions," Zh. Prikl. Mekh. Fiz., No. 5 
(1980). 

370 



7. A. A. Borisov and A. F. Vakhgel't, "Wave processes in two-phase media containing solid 
particles," in: Wave Processes in Two-Phase Media [in Russian], Inst. Teplofiz. Sib. 
Otd. Akad. Nauk SSSR, Novosibirsk (1980). 

8. Yu. A. Buevich and V. G. Markov, "Rheological properties of finely dispersed suspensions. 
Nonsteady flows," Inzh.-Fiz. Zh., 34, No. 6 (1978). 

9. Yu. A. Buevich and Yu. A. Korneev, "The dispersion of thermal waves in granular materi- 
al," Inzh.-Fiz. Zh., 31, No. 1 (1976). 

I0. L. D. Landau and E. M. Lifshits, The Mechanics of Continuous Media [in Russian], Gostekh- 
teorizdat, Moscow (1954). 

ii. O. V. Rudenko and S. I. Soluyan, Theoretical Principles of Nonlinear Acoustics [in Rus- 
sian], Nauka, Moscow (1975). 

12. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974). 

STABILITY OF COLLIDING DROPS OF IDEAL LIQUID 

V. A. Arkhipov, I. M. Vasenin, 
and V. F. Trofimov 

UDC 532.529 

The determination of the stability conditions of a system of colliding drops is of in- 
terest not only as one of the classical problems of fluid mechanics, but is urgent for the 
solution of a number of applied problems. A rather detailed analysis of the work on this 
problem performed up to 1970 is given in [I]. In the last decade interest in the physics of 
the interaction of drops has been stimulated by the development of the gasdynamics of two- 
phase flows in jets. So far, however, the laws of collision, deformation, coalescence, and 
disruption of drops have not been conclusively determined. 

In the present article we present the results of an experimental and analytical study 
of the stability of a system of two colliding drops of an ideal liquid. To describe the 
interaction of drops quantitatively we use the following dimensionless numbers obtained by 
similitude theory and dimensional analysis [2, 3]: 

Y =: D~/D1 ( 1 )  

is the ratio of the diameters of the drops, We = 0u2D1/~ is the Weber number, ~ = IM / 
[(Do/2)7/2~po] is the normalized angular momentum. Here 

M : m~m~u6,( , , , ,  + ,,~J, D O : (D~-Z-D~)~"~, ( 2 )  

where m~ and m2 are the masses of the colliding drops, 6 is the impact parameter, and M is 
the angular momentum of the system of drops. 

Since for water drops viscous forces are negligibly small in comparison with surface 
tension and inertial forces, the effect of dimensionless numbers involving the viscoslty 
(e.g., Lp = poD2/~ 2 ~ 105 , Re = puD:/q ~ 103 ) is unimportant. 

An experimental study of the types of interaction of water drops for We = 0.1-120 (v = 

1.9) showed that for We = 15-50 the interaction is characterized by coalescence of the 
drops with a subsequent possible disruption under the action of centrifugal forces [2]. Con- 
sequently, it is expedient to seek the limit of stability of a system of drops in this range 
of Weber numbers. We have investigated stabilitv conditions of a system of two colliding 
dreps for y = 1.15-2.6 and We = 10-50. The apparatus (Fig. i) consisted of two generators ! 
producing counterstreams of water drops whose diameters could be varied from 0.3 x 10 -3 to 
1.2 x 10 -3 m. The density, dynamic viscosity, and surface tension of the drops of distilled 
water were p = 103 kg/m 3, n = i0 -3 kg/m' sec, and ~ = 73 x 10 -3 kg/sec 2 at 20~ The rela- 
tive velocities u of the colliding drops varied from ! to 5 m/see. Three-dimensional photo- 
graphs were taken two SKS-i m motion-picture cameras 2 located at right angles to one another 
and perpendicular to the stremms of drops. Illumination was provided by photoflood lamps 3 
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